1 Search
A*搜索算法
定义
A * 搜索算法(英文:A*search algorithm,A * 读作 A-star),简称 A * 算法,是一种在图形平面上,对于有多个节点的路径求出最低通过成本的算法。它属于图遍历(英文:Graph traversal)和最佳优先搜索算法(英文:Best-first search),亦是 BFS 的改进。
过程
定义起点 ,终点 ,从起点(初始状态)开始的距离函数 ,到终点(最终状态)的距离函数 ,[^note1],以及每个点的估价函数 。
A * 算法每次从优先队列中取出一个 最小的元素,然后更新相邻的状态。
如果 ,则 A * 算法能找到最优解。
上述条件下,如果 满足三角形不等式,则 A * 算法不会将重复结点加入队列。
当 时,A * 算法变为 Dijkstra;当 并且边权为 时变为 BFS。
例题
八数码
题目大意:在 的棋盘上,摆有八个棋子,每个棋子上标有 至 的某一数字。棋盘中留有一个空格,空格用 来表示。空格周围的棋子可以移到空格中,这样原来的位置就会变成空格。给出一种初始布局和目标布局(为了使题目简单,设目标状态如下),找到一种从初始布局到目标布局最少步骤的移动方法。
123
804
765思路
函数可以定义为,不在应该在的位置的棋子个数。
容易发现 满足以上两个性质,此题可以使用 A * 算法求解。
示例代码
#include <algorithm>
#include <cstring>
#include <iostream>
#include <queue>
#include <set>
using namespace std;
constexpr int dx[4] = {1, -1, 0, 0}, dy[4] = {0, 0, 1, -1};
int fx, fy;
char ch;
struct matrix {
int a[5][5];
bool operator<(matrix x) const {
for (int i = 1; i <= 3; i++)
for (int j = 1; j <= 3; j++)
if (a[i][j] != x.a[i][j]) return a[i][j] < x.a[i][j];
return false;
}
} f, st;
int h(matrix a) {
int ret = 0;
for (int i = 1; i <= 3; i++)
for (int j = 1; j <= 3; j++)
if (a.a[i][j] != st.a[i][j] && a.a[i][j] != 0) ret++;
return ret;
}
struct node {
matrix a;
int t;
bool operator<(node x) const { return t + h(a) > x.t + h(x.a); }
} x;
priority_queue<node> q; // 搜索队列
set<matrix> s; // 防止搜索队列重复
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
st.a[1][1] = 1; // 定义标准表
st.a[1][2] = 2;
st.a[1][3] = 3;
st.a[2][1] = 8;
st.a[2][2] = 0;
st.a[2][3] = 4;
st.a[3][1] = 7;
st.a[3][2] = 6;
st.a[3][3] = 5;
for (int i = 1; i <= 3; i++) // 输入
for (int j = 1; j <= 3; j++) {
cin >> ch;
f.a[i][j] = ch - '0';
}
s.insert(f);
q.push({f, 0});
while (!q.empty()) {
x = q.top();
q.pop();
if (!h(x.a)) { // 判断是否与标准矩阵一致
cout << x.t << '\n';
return 0;
}
for (int i = 1; i <= 3; i++)
for (int j = 1; j <= 3; j++)
if (!x.a.a[i][j]) fx = i, fy = j; // 查找空格子(0 号点)的位置
for (int i = 0; i < 4; i++) { // 对四种移动方式分别进行搜索
int xx = fx + dx[i], yy = fy + dy[i];
if (1 <= xx && xx <= 3 && 1 <= yy && yy <= 3) {
swap(x.a.a[fx][fy], x.a.a[xx][yy]);
if (!s.count(x.a))
s.insert(x.a),
q.push({x.a, x.t + 1}); // 这样移动后,将新的情况放入搜索队列中
swap(x.a.a[fx][fy], x.a.a[xx][yy]); // 如果不这样移动的情况
}
}
}
return 0;
}例题:
Status
Problem
Tags